Journal of Organometallic Chemistry, 99 (1975) 119-126 0 **Elsevier Sequoia Sk, Lausanne -Printed in The Netherlands**

ORGANOMETALLIC COMPOUNDS HAVING METAL-METAL BONDS

XXV*. TETRACARBONYLNITROSYL-MOLYBDENUM AND -TUNGSTEN DERIVATIVES OF THE GROUP IV ELEMENTS

E.E. ISAACS and W.A.G. GRAHAM*

Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2 El (Canada) **(Received April 8th, 1975)**

Summary

Tetraethylammonium salts of the anions $[R_3M/M(CO)_5]$ **react with NO⁺-** PF_6 to form the yellow to orange-red air stable products $R_3M'M(CO)_4NO$ (M = M_0 , $R_3M' = GePh_3$, $SnPh_3$, $SnMe_3$, $PbPh_3$; $M = W$, $R_3M' = SiPh_3$, $SiPh_2Me$, $GePh_3$, $SnPh₃, SnMe₃, PbPh₃$). Yields vary from 7 to 54% and $M = Cr$ derivatives could **not be obtained. Alternative synthetic procedures for the known complexes** $XW(CO)_aNO (X = C₁, Br, I)$ are described. IR spectroscopy established that the **compounds exist as** *trans* **isomers in all cases. On the basis of carbonyl stretching force constants and NMR coupling constants, some qualitative comments are** made on the bonding in the isoelectronic series $[Me_3SmW(CO)_5]$, $Me_3SmW(CO)_{4}$ NO, and Me₃SnRe(CO)₅.

Introduction

Series of nitrosyl carbonyls corresponding to Ni(C0)4 [Co(CO)3NO, Fe- $(CO)₂(NO)₂$, etc.] and Fe(CO)₅ [Mn(CO)₄NO] are well known [2], and this iso**electronic principle has also been exemplified by the preparation of derivatives** of the type R_3 SnFe(CO)₃NO [3], which are analogs of the well-known R_3 SnCo-**(CO), series [4]_ The synthesis of the first members of a pseudo-pentacarbonyl**rhenium series, $XW(CO)₄NO$ (X = Cl, Br, I), was recently reported [5].

We wish to describe our preparation of an extensive series of compound& of the type $R_3M'M(CO)_aNO$ where $M = Mo$ or W, and R_3M' is an organo-substituted Group IV element, for which the anions $[R_3M'M(CO)_5]$ ⁻ [6] served as **precursors.**

^{*} For part XXIV, see ref. 1.

Results **and discussion**

The reaction of tetraethylammonium salts of the anions $[R_3M'M(CO)_5]$ ⁻ [6 J **with nitrosonium hexafhzorophosphate leads to the nitrosyl-substituted** products, $R_3M'M(CO)_4NO$ ($M = Mo$, $R_3M' = GePh_3$, $SnPh_3$, $SnMe_3$, $PbPh_3$; $M =$ **W, R₃M'** = SiPh₃, SiPh₂Me, GePh₃, SnPh₃, SnMe₃, PbPh₃). All reactions were performed in dichloromethane, often at -78° C, and yields varied from 7 to 54% **depending upon M, M', and R. The tetracarbonylnitrosyl products formed pale yellow to red-orange crystals which are air stable, deteriorating only after long exposure. They are soluble in common organic solvents such as n-pentane, benzene, and dichloromethane, although solutions decompose after a few hoursin the presence of air. When irradiated with ultraviolet iight, an n-hexane solution** of Ph₃SiW(CO)₄NO completely decomposed to a non-carbonyl product within **8 h.**

Another mode of reaction of NO' with neutral metal carbonyls [7] or carbony1 anions [S] involves oxidation rather than nitrosyl formation, and this may account for the variation in yield of the R,M'M(CO),NO compounds noted above. There appear to be two main reaction pathways:

$$
[R_3M'M(CO)_5]^+ + NO^*PF_6^- \longrightarrow \begin{bmatrix} R_3M'M(CO)_4NO \\ R_3M'F + M(CO)_6 \end{bmatrix}
$$

The fluoride derivatives $(R_3M' =$ SiPh₃, SiPh₂Me, GePh₃, SnPh₃) were isolated **and identified mass spectrometrically, and must arise by abstraction of fluoride ion from PF6-, the counter ion. Relatively large amounts of the hexacarbonyl were formed in all reactions, more so with molybdenum than with tungsten. Attempts to prepare the tetracarbonylnitrosyl compounds from** $[Ph_3SiCr(CO)_5]$ and [Ph₃GeCr(CO)₅]⁻[6] were unsuccessful. It seems reasonable to suggest that the formation and yield of $R₃M'M(CO)₄NO$ products is determined by the stabil**ity of the M'-M bond to oxidation.**

Cleavage of the bond between two metals by NO' has also been shown to occur for binuclear compounds such as $Mn_2(CO)_{10}$ and $Re_2(CO)_{10}$ [9]. We have observed a related oxidative cleavage by NO⁺ of [Et₄N][MnW(CO)₁₀] [10] (W- $(CO)_6$ and $[CH_3CNMn(CO)_5]^+$ were the only products identified) and of $[Et_4N]_{2^-}$ $\{W_2(CO)_{10}\}\$ [11] $(W(CO)_6$ was the main product, with some of the known HW_2 - $(CO)_{9}NO$ [12]).

Prior to the report by Barraclough, Bowden, Colton and Commons [51 on the reaction of $[XM(CO)_5]$ ⁻ with NO^{F} (M = Mo, W) we had studied the same **reaction in the tungsten case and encountered difficulty in separating the desir**ed products from $W(CO)_{6}$. Others have recently commented on the difficulty **that this separation presents 1131. Accordingly, we mention here our finding** that this separation problem can be circumvented by using excess $\rm NO^+PF_6^-$ in **acetonitrile as solvent; the hexacarbonyl is converted under these conditions to the known ionic acetonitrile complexes [8,9,14]. The reaction was monitored** by IR, and NO⁺PF₆⁺ was added until the W(CO)₆ band was eliminated. Excess **nitrosonium salt did not substantially decrease the yield of XW(C0)4NO.**

We have also observed that reaction of $[Et_aN][X_3SnW(CO)_5]$ $(X = Cl, Br)$ with NO⁺PF₆⁻ proceeds with elision of SnX₂.

 $[X_3$ SnW(CO)_s]⁻ + NO⁺ $\xrightarrow{\text{CH}_2\text{Cl}_2}$ XW(CO)₄NO + SnCl₂ + CO $(X = CI, Br)$

In **fact, for X = Cl, a better yield of ClW(CO),NO was obtained in this reaction** than in the direct reaction with [CIW(CO)_5 ⁻.

Spectroscopic properties

The R3M'M(C0),N0 complexes exist as the *tram* **isomers, as shown by the IR spectra (Table 1). Two IR active carbonyl stretching frequencies** *(A,* **and E)** are predicted for the C_{4v} trans isomer, and two are observed; the assignment fol**lows from the relative intensities [15], with the very weak band near 2100 cm-'** assigned to the A_1 mode and the most intense carbonyl band near 2020 cm⁻¹ as E. The A_1 vibration is scarcely visible at normal IR concentrations. A weak B_1 mode is observed in most cases since the actual symmetry is lower than $C_{4\nu}$. **Bands due to the mono-'3C0 substituted molecule (C, symmetry) were also observed, although a concentrated solution was required for precise measurement of the** *A' (Al)* **mode. A nitrosyl stretching band was observed around 1720 cm-' at about half the intensity of the carbonyl E mode.**

We have obtained the Raman spectrum of BrW(C0)4N0 in the solid state and confirm the presence of two NO stretching frequencies (presumably due to crystal symmetry) reported previously [5]. A detailed IR and Raman study of this molecule has been carried out by Butler and Shaw [163.

Mass spectra were relatively simple, and the molecular ion was observed in all cases. Stepwise loss of CO groups from the molecular ion occurred; simultaneous loss of the NO group usually became prominent only after three CO groups had been lost, but in some cases was detected after loss of two CO groups

 a r (Sn-CH₃) = 9.8; J(Sn-CH₃) = 40 Hz; CCl₄ with TMS as external standard. b τ (Si-CH₃) = 9.15; CCl₄ with TMS as internal standard. $c^2 \tau (Sn-CH_3) = 9.73; J(^{117}Sn-CH_3) = 45.3 Hz, J(^{119}Sn-CH_3) = 47.7 Hz;$ **CDC13 wtth acetone (T 7.95) as mtemal standard.**

by small deviations in the observed isotope pattern. In the trimethyltin derivatives, mass spectra were more complex, showing loss of one or two methyl groups; ions of the following series were observed: $Me₃SnM(CO)_n(NO)⁺$ (n = 4, 3); $\text{Me}_2\text{SnM}(\text{CO})_n(\text{NO})^{\dagger}$ (n = 4, 3, 2, 1); MeSnM(CO)_n(NO)⁺ (n = 3, 2, 1).

Comments on bonding

For comparison with other isoelectronic metal carbonyl series, it was of interest to calculate carbonyl stretching force constants for the trans-R3M'M- (CO),NO derivatives. This has been done using the Cotton-Kraihanzel force field [17] and the parameters k_{CO} , k_{NO} , k_{CO-NO} and k_i , (where k_i is the usual **CO-CO** interaction constant, with $k_{cis} = k_i$ and $k_{trans} = 2k_i$). The values obtained for a representative compound, $Ph_3GeW(CO)_4NO$, are: $k_{CO} = 16.77$, $k_{NO} = 13.49$, $k_{\text{CO}-NO}$ = 0.84, k_i = 0.16 mdynes \mathbf{A}^{-1} .

A comparison of k_{CO} for $R_3M'W(CO)_4NO$ and $IW(CO)_4NO$ with $k_{\text{equatorial}}$ for the isoelectronic $R_3M'Re(CO)_{5}$ [18] and $Re(CO)_{5}$ [19] showed differences **of less than 0.2 mdyne K' between members of each isoelectronic pair.**

A possible interpretation of the essentially-similar equatorial force constants is as follows. The process of going from Re-CO to W-NO may be regarded as the transfer of a proton from the Re nucleus to the carbon nucleus. Two consequences of this process for n-bonding in the molecule can be envisaged. First, the lower nuclear charge resulting from the removal of a proton would destabilize the metal levels, increasing back-donation to the equatorial carbonyls, which would result in a lower k_{CO} . Alternatively, transfer of the proton to the **axial ligand lower its n* levels; hence back-donation to the axial ligand is increased, resulting in electron withdrawal from the metal and a stabilization of metal** levels, which would bring about a higher k_{CO} for the equatorial carbon λ Since the k_{CO} values are about the same, the two effects must roughly cancel. That is, the greater π electron acceptor capability of NO^{*} compensates for the difference in nuclear potential. This discussion assumes that changes in the σ frame**work are minimal.**

Further insight into the bonding in isoelectronic series is provided by the force constant and NMR coupling constant data on trimethyltin derivatives (Table 2).

It is evident from *k,quatorial* **that in the pentacarbonyltungsten anion, the lower nuclear potential relative to the pentacarbonylrhenium compound is not compensated, as it is in the nitrosyl. The electronic similarity of the W(CO),NO** and Re(CO)_5 moieties is further shown by the nearly identical proton-tin **coupling constants. The usual arguments [20] relating s-character to coupling** constants suggest that $[W(CO)_s]$ ⁻ is a much less electronegative group than $W(CO)₄NO$ or $Re(CO)₅$ and this seems a reasonable conclusion.

TABLE 2

FORCE CONSTANTS AND NMR COUPLING CONSTANTS OF THE TRIMETHYLTIN DERIVATIVES

 \overline{a}

 $\ddot{}$

123

l

Experimental

Melting points were determined using a Kofler hotstage microscope. Analytical results (Table 3) were obtained by the Microanalytical Laboratory of this department and by the Alfred Bemliardt Microanalytisches Laboratorium, Elbath iiber Engelskirchen, West Germany.

Infrared spectra of the carbonyl and nitrosyl stretching regions were measured by means of a Perkin-Elmer Model 337 spectrometer at a scanning rate of 39 cm⁻¹ min⁻¹, and recorded in expanded form (1 cm of chart $\approx 10 \text{ cm}^{-1}$) on **an external recorder. Bands of gaseous CO (2147.08 cm-') and polystyrene (1583.1 cm-') were used to calibrate the spectra in the carbonyl and nitrosyl stretching regions respectively. Band positions listed in Table 1 were measured** in n-hexane (Phillips Petroleum Co.) which was distilled from sodium wire under **nitrogen before use. The relatively non-volatile solid samples were pumped at ca. 50°C under vacuum to remove traces of hexacarbonyl just prior to dissolu**tion. Table 1 also lists as footnotes NMR data for the MePh₂Si and Me₃Sn de**rivatives measured on a Varian A56/60 instrument.**

Mass spectra of the nitrosyl derivatives were obtained using A.E.I. MS-12 and MS-9 instruments (70 eV, direct introduction of sample at lowest temperature necessary to produce the molecular ion).

Reactions *were carried* **out using dichloromethane solvent, which was dis**tilled from P₂O₅ prior to use. Reagent acetonitrile was used in some reactions; **n-pentane and ether used in the extractions were also reagent grade.**

The preparation of the Group IV-pentacarbonyl-metalates of molybdenum and tungsten was described previously [6]. The literature method [21] was used to prepare $[Et_aN][XW(CO)_5]$ (X = Cl, Br, I). Nitrosonium hexafluorophosphate **was purchased from the Ozark-Mahoning Co_ and was used without further purification.**

Preparation of Ph3 GeMo(C0)4N0

A Schlenk tube containing a mixture of $[Et_aN][Ph_3GeMo(CO)_5]$ (1.5 g, **2.2 mmol) and NOPF, (0.5 g, 2.8 mmol) was evacuated and ca. 30 ml of dichloromethane was distilled into the vessel at -78°C. After the reaction mixture was warmed to -10°C (salt/ice bath) and stirred for 2.5 h, the solution had turned red-brown. The solvent was removed under reduced pressure and the residue was extracted with five 50-ml portions of n-pentane or until the extracts were colorless. The solvent was removed using water aspiration. A water cooled probe was fitted to the flask and W(CO)6 and Ph3GeF, formed as by-products in the reaction, were sublimed in high vacuum at 25-40°C over a period of 2-3 days. The sublimation residue was then recrystallized from n-pentane affording orange crystals of the analytical sample (0.4 g, 33% yield).**

The Ph,SnMo(CO),, Ph,GeW(CG)4N0, and Ph3SnW(C0)4N0 complexes were prepared in an analogous manner.

Preparation of IW(CO)4N0

To a solution of $[Et_4N]$ $[IW(CO)_5]$ (2.0 g, 3.4 mmol) in 10 ml acetonitrile **was added dropwise a solution of NOPF, (ca. 2** *M) in* **the same solvent. The ad**dition was continued until the IR bands due to W(CO)₆ had diminished consid**erably- The solvent was removed in vacua and the product extracted with a total of 300 ml n-pentane. The yellow solution was filtered and concentrated** to ca. 50 ml. On cooling at -78°C yellow crystals formed; these were filtered **and sublimed at room temperature to give 0.35 g (22% yield) of the product.**

The BrW(C0)4N0 complex was prepared in an analogous fashion with the exception that the product was extracted with l/l dichloromethane/ether solution.

*Preparation of ClW(CO)*₄NO

To a solution of [E&N] [Cl,SnW(CO),] (1.4 g, 2.1 mmol) in dichloromethane (40 ml) solid NOPF₆ (0.5 g, 2.8 mmol) was added slowly at room tempera**ture and the solution stirred for 15 min. After removing the solvent in vacua, the residue was extracted with 300 ml n-pentane, and after filtering, the solvent was removed on a rotary evaporator. The solid was transferred to a sublimer and W(CO), was sublimed at room temperature and 0.25 torr. After removal of the** $W(CO)$ ₆ from the sublimation probe, the product was sublimed at 60° C and 0.1 g **(14% yield) of pale yellow crystals were obtained.**

Preparation of Ph3SiW(CO)4N0

To a solution of $[Et_4N][Ph_3SiW(CO)_5]$ (3.0 g, 4.2 mmol) in 50 ml of di**chloromethane, 0.5 g of NOPF, was added and the solution stirred at room temperature. The progress of the reaction was followed by the disappearance of starting material bands in the IR spectrum. An additional 0.5 g of NOPF, was added after O-5 h and stirring continued for 1.5 h. Ether (20 ml) was added, the solution was filtered and the solvents were removed in vacua. The residue was extracted with four 50-ml portions of n-pentane solution concentrated to ca. 50 ml. On cooling to 0°C crystals formed, and these were transferred to a sub**limer. The Ph₃SiF and W(CO)₆ formed in the reaction were sublimed at 0.05 torr. **The orange solid left behind was recrystallized from n-pentane affording 0.6 g (25% yield) of product.**

Preparation of MePh,SiW(CO),NO

Dichloromethane was vacuum distilled into a Schlenk tube containing $[Et_4N]$ [MePh₂SiW(CO)₅] (2.5 g, 3.8 mmol) and NOPF₆ (0.7 g, 4.0 mmol). The solution was stirred at -78° C for 7 h under closed vacuum and then warmed to **room temperature before** removal of the solvent. **The residue was extracted with 150 ml n-pentane, filtered and the solvent removed leaving behind a red** oil. An orange oily solid, which was identified as mainly MePh₂SiF, sublimed **onto a Dry Ice/acetone probe under vacuum. The residue was pumped for 2** days at room temperature to remove W(CO)₆ and residual MePh₂SiF. Crystallization of the solid from n-pentane afforded orange crystals of MePh₂SiW(CO)₄-**NO (0.4 g, 20% yield).**

The preparation of the complexes MePh₂SiMo(CO)₄NO and $Ph_3Sim_0(CO)_{4}$ -**NO was attempted in a similar manner but only Mo(CO), was isolated.**

Preparation of Me,SnW(CO),NO

Dichloromethane (30 ml) was distilled into a reaction vessel containing $[Et_4N][Me_3ShW(CO)_5]$ (2.0 g, 3.2 mmol) and NOPF₆ (0.7 g, 4.0 mmol) cooled to -78° C. The mixture was kept at this temperature for three days. The solvent was removed by vacuum distillation into a trap cooled to -196° C. The residue **was extracted with several portions of n-pentane, filtered and the solvent removed by water aspiration vacuum. The residue was charged into a sublimer and the volatile Me,SnW(CO),NO was sublimed onto a water-cooled probe together** with some $W(CO)_{6}$. The product was washed off the probe by squirting with ca. 10 ml of n-hexane, leaving most of the W(CO)₆ behind. This was then chromato**graphed on a Florisil column eluting as a red band with n-hexane. Cooling at -20°C overnight afforded orange crystals of M3SnW(C0)4N0 (0.16 g, 10% yield). The unsublimed material left behind was not identified but showed both carbony1 and nitrosyl bands in the infrared spectrum.**

The Me,SnMo(CO),NO complex was prepared using similar conditions.

Preparation of Ph₃PbW(CO)₄NO

A dichloromethane solution of $[Et_4N][Ph_3PbW(CO)_5]$ (4.0 g, 4.5 mmol) and NOPF₆ (1.0 g, 5.7 mmol) was stirred at -78°C for 9 h. The solvent was re**moved under reduced pressure with the temperature of the reaction vessel main**tained at -78° C. The residue was extracted with 6×30 -ml portions of n-pentane, filtered and the solvent removed. The large amounts of $W(CO)_{6}$ and other by**products formed in the reaction were sublimed. Red crystals of product were obtained by crystallization of the unsublimed material from n-pentane (0.2 g, 7% yield).**

The Ph₃PbMo(CO)₄NO complex was prepared under similar conditions. Be**cause of low yield a sufficient sample for analysis was not obtained and the compound was characterized only mass spectrometrically.**

Acknowledgement

We thank the National Research Council of Canada for financial support and for a scholarship to E.E.I. We thank Dr. A.C. Sarapu for valuable discussions.

References

- **1 E.E. Isaacs and W.A.G. Graham, Can. J. Chem.. 53 (1975) 975.**
- **2 W.P. Griffiths, Adv. OrganometaL Chem.. 7 (1968) 211.**
- **3 M_ Casey and A-R. Manning. J. Chem. Sec. A. (1971) 256.**
- **4 D.J. Patmore and W.A.G. Graham, Inorg. Chem** , **7 (1968) 771.**
- **5 C.G. Barraclough. XA. Bowden. R. Colton and C.J. Commons. Aust. J. Chem.. 26 (1973) 241.**
- **6 E.E. Isaacs and W.A.G. Graham, Can J. Chem.. 53 (1975) 467.**
- **7 R.H. Reimann and E. Singleton. J. Chem. Sot. Dalton Trans.. <1973) 2658.**
- **8 N. Ohamoto, Ph.D. Thesis. University of Alberta, 1971.**
- **9 N.G. Connelly and L.F. Dahl. Chem. Commun. (1970) 1880.**
- **10 U. Anders and W.X.G. Graham, J. Amer. Chem. Sot.. 89 (1967) 589.**
- **11 R-G. Hayter. J. Amer, Chem. Sot.. 88 (1966) 4376.**
- **12 M_ Andrews. D.L. Tipton. S-W. Rirtley and R. Bau. J. Chem. Sot. Chem. Commun.. (1978) 181.**
- **13 R-B. Emg. M.S. Saranand S-P. Anand. Inorg. Chem.. 13 (1974) 3038.**
- 14 M. Green and S.H. Taylor, J. Chem. Soc. Dalton, (1972) 2629.
- **15 L-E. Orgel. Inorg. Chem. 1 (1962) 25.**
- 16 L.S. Butler and C.F. Shaw, personal communication to W.A.G. Graham, January 1975.
- **17 F.A. Cotton and C.S. Kraihanzel, J. Amer. Chem. Sot.. 84 (1962) 4432.**
- 18 W. Jetz, P.B. Simons, J.A.J. Thompson and W.A.G. Graham, Inorg. Chem., 5 (1966) 2217.
- 19 H.D. Kaesz, R. Bau, D. Hendrickson and G.M. Smith, J. Amer. Chem. Soc., 89 (1967) 2844.
- **20 H.R.H. Patd and W-A-G. Graham. J. Amer. Chem. Sot., 87 (1965) 673.**
- **21 EW. Abel. IS. Butlerand J.G. Reid, J. Chem. Sot.. (1963) 2068.**